
Optimal Control and Geometric Algebra.Introduction and some Mathematics.Students in economics and microeconomics are not mathematicians, with a few exceptions. Nei-ther are engineers. That simple truth is forgotten by most of the authors dealing with optimiza-tion and specially with optimal control. They try to be rigourous, complete, maybe brilliant,and so are discouraging for � ordinary people � whose ambition is not to understand the �nestdetails of mathematical demonstrations, or to know the most intricate particular cases where thetheorem is not valid.I am myself not sure at all to have mastered in depth all the subtleties of the theory, but Inevertheless used it, I think with some success. I could do that because I found in some books,or constructed myself rough demonstrations and economical interpretations that allowed me tosafely use the theory and to understand what I was doing.I will try here to transmit some of that knowledge.Somewhat in contradiction with what I told above, I will try to use coordinate free mathema-tics, both old (Cli�ord) and new, that is � Geometric Algebra � and � Geometric Calculus �as developed by David Hestenes and his followers (see Internet). It seems possible to me � tohunt two rabbits at the same time � as we say in French, because I will use a light version ofGA and GC, involving only the well known inner product between vectors, that is (a:b) . Thereader will use a new language, almost without noticing it ...First we must de�ne the directional derivative for scalar or vectorial valued functions of vectors.If f(x) is a scalar valued function and a some vector, we de�ne :(1) a:rx f(x) = lim"! 0 1" [f(x+ "a)� f(x)]The expression a:rx is the interior product of two vectors and thus a scalar di�erential operatorwhich in tensorial notation would be written ai @@xi . But we will not need coordinates.In the same way we can de�ne the directional derivative of a vector u(x) , possibly located inanother vector space than x :(2) a:rxu(x)= lim"! 0 1" [u(x+ "a)�u(x)]On both sides of (2) we get vectors. Try to convince yourself by some simple examples that sucha de�nition is much clearer than de�ning in the traditional way ru as a matrix and multiplyingit (from the left ?) by a .We must also keep in memory that, by de�nition in GC, as a di�erential operator, rx acts onlyon the scalar or vector immediately at its right, unless other indications are given. Thus wecould not write carelessly f(x)a:rx without indicating by some superscript that r acts on f(x)on its left.In the second place, we need reciprocal vectors of a set ej of independent vectors, which deter-mine some vector space Am . Calling them ei , we de�ne them by the relations :(3) ei :ej= �ijIt is not a di�cult task with standard linear algebra to show that they exist in number m, arelinearly independent and located in Am (supposed to be a metric space). But with GA that ismuch easier1 done.1. Interested readers will �nd the necessary explanations in the Cambridge GA course on Internet.1



Finally we must discuss brie�y a subject which is strangely omitted in many more or less oldbooks on mathematical economics. I mean that economic models are normally de�ned in a�nespaces, not in metric ones. A lot of books dont mention that and produce drawings where thedirect space and the dual space are without explanation superposed, and where a metric is usedin some demonstrations. Why does that work ? Because without mentioning it, or perhapswithout knowing it .... , the authors establish an isomorphism between the a�ne economic spaceand an euclidean representation space.There is no problem as long as you dont have the strange idea, - for an economist - , to do somechange of basis vectors. For example, as I did, you could try tensorial methods and �nd a niceproof of the Kuhn and Tucker conditions, discovering that they simply express a change of cur-vilinear coordinates ! In such a proof you must work without metrics and use the dual space.But GA gives us an even simpler proof. So we will stay with the above mentioned isomorphism,but knowingly.Non-linear Optimization.We consider the following well-known constrained optimization problem :(4) 8<: Max f(x)gk(x)> 0k 2 (1; 2;�� ; p) x2EnWe suppose the f and g functions continuous, with �rst and second continuous derivatives.Let x0 be a local maximum, where gs(x) are m saturated constraints. We name Ds the admis-sible domain de�ned by the gs , and Am the m-dimensional vector space de�ned by the gra-dients rxgs(x0) . Am is a subspace of En . Its orthogonal complement is written CAm . Ofcourse we suppose x0 to be a � normal � point, that is with linearly independent constraint gra-dients.Let 
 be a neighbourhood of x0 in Ds . It is easy to see that we can de�ne admissible vectorsa2En, associated with some "0; such that :(5) 8<: gs(x0)= 0x=(x0+ "a) 2
�Ds a2En "0> "> 0�gs(x0)= gs(x0+ "a)= "a:rxgs(x0) + "o(")> 0Thus with " small enough we see that (5) implies :(6) a:rxgs(x0)> 0The existence of admissible vectors is obviously related to the fact that the gradients of thesaturated constraints are linearly independent. Then every a satisfying (6) restricted to inegalityis an admissible direction. The a's can be split in (ajj + a?) with ajj 2 Am and a? 2 CAm .Thus only the parallel component is constrained.Considering now f(x) we can write :(7) �f(x0)= f(x0+ "a)� f(x0) = "a:rf(x0)+ "o(")As x0 should be a local optimum, we must have :(8) �f(x0)6 0thus :(9) a:rf(x0)6 0Let us consider now the reciprocal vectors in Am . They are de�ned by :2



(10) ai:rxgs(x0)= �is 8s2 (1; 2;� : ;m)Those relations mean that ai is tangent to all saturated constraint surfaces, the ith excepted.Note that gi(x0+ "ai) = "+ "o(") .The ai's may not be admissible vectors (it depends on the concavity/convexity of the gs 's, asyou may see with simple two-dimensional examples), but they can always be de�ned as limits ofsequences of admissible a's .We can also split rxf(x0) between Am and CAm :(11) rxf(x0)=rxf(x0)k+rxf(x0)?=��srxgs(x0) +rxf(x0)?Multiplying by an admissible a , we get :(12) a:rxf(x0)=��s a:rxgs(x0) +a?:rxf(x0)?As a? is free, we must have :(13) rxf(x0)?=0 rxf(x0)=rxf(x0)k2AmThen we get :(14) a:rxf(x0) =��s a:rxgs(x0)Considering a sequence of a's whose limit is a reciprocal vector ai , we can write :(15) ��s ai:rxgs(x0)=��s �is=��i=ai :rxf(x0) = lima! ai a:rxf(x0)6 0Thus all the �'s are positive or zero.That limiting process is the one we �nd in more traditional presentations where an admissibletrajectory is de�ned in 
, possibly tangent to the tangent cone in x0 (a notion which we did notuse in our proof).Of course we demonstrate also the well-known economical interpretation of the �'s, as we canwrite, using (15) and (7) :(16) �f(x0)= f(x0+ "as)� f(x0)'� "�s'��s gs(x0+ "as)=��s �gs(x0)Thus we have proved the necessary Kuhn-Tucker conditions. We only have to incorporatethe non-saturated gs� constraints, with �s�=0 , to get :(17) 8><>: rxf(x0) +�krxgk(x0)= 0�k gk(x0)= 0gk(x0)> 0 �k> 0 without summationWe see that these relations have a�ne character, as expected. So the metrics we employed playno role in the �nal results.The restriction of our demonstration to � normal � points may seem too severe, as the K-Ttheorem has a more general validity. We can easily expand it to a case where more than n cons-traints are saturated. Suppose the gs are in number n , and we de�ne everything as above. Letus then add another saturated constraint gn+1. We can write :rxf(x0)+�srxgs(x0) =0�rx gn+1(x0)+��srxgs(x0)= 0 �> 0Adding these two relations we get :rxf(x0)+ (�s+��s)rxgs(x0)+�rx gn+1(x0)= 03



We can choose � small enough to have all coe�cients positive. So step by step we can extendthe theorem to an arbitrary number of constraints. Of course we must verify that there remainsan admissible neighbourhood for x0 . It is very easy to do that by using the reciprocate vectors.For example when adding gn+1> 0 we �nd that there still exist admissible vectors if and only ifthere is at least one negative �s .
We will now establish su�cient conditions.It is enough to write down the lagrangian function and to develop it :(18) L(x)= f(x) +�k gk(x)= f(x)+�s gs(x)For the local maximum x0 we have :(19) L(x0)= f(x0) a:rxL(x0) =0 gs(x0)= 0Then we get :(20) L(x0+ "a)�L(x0)= f(x0+ "a)� f(x0) +�s gs(x0+ "a)= 12 "2(a:rx)2L(x0)+ "2o(")which we can write2 :(21) f(x0+ "a)� f(x0) =��s gs(x0+ "a)+ 12 "2(a:rx)2L(x0)+ "2o(")where a is of course an admissible vector, and (x0+ "a)2
 .Let us call �� the �s which are strictly positive3. Then we get :(22) f(x0+ "a)� f(x0) =��� g�(x0+ "a)+ 12 "2(a:rx)2L(x0)+ "2o(")As � ��g�(x0 + "a) is a �rst order " , strictly negative quantity4, except when (x0 + "a) is aboundary point where all g�(x0 + "a) = 0 , we see immediately that the su�ciency problem isrelated to those boundary-points, and that a su�cient condition is :(23) (a:rx)2L(x0)< 0To resume, we have established necessary and su�cient conditions for the optimization problemas formulated in (4) for � good � functions, with a minimum of mathematical preliminaries.Once that work done and understood in depth the study of more general or particular casesshould be easier for the student.
2. I remember one of my math teachers who sternly warned us against writing formulas like (21), mixing deve-loped and non-developed terms. Here that breaking of the rules seems e�cient ....3. It is interesting to note that �s = 0 means that the associated reciprocal vector as is perpendicular torxf(x0), that is tangent to the f(x) surface. (In the tensorial method as appears to be the basis vector asso-ciated to the new curvilinear coordinate line with index s ).4. We may note here the particular case where n constraints are saturated at x0 . Then the �rst term remainsstrictly negative and the K-T conditions are both necessary and su�cient.4



Optimal Control .... , almost painless.That subtitle looks like a joke. But I am serious. What I mean is that a lot of people who stepback or at least hesitate to invest in the di�cult mathematical reasoning involved by optimalcontrol techniques, are in fact able to use them. But they lack an � Ariadne's thread � whichcould help them to procede methodically in practical problems to be solved and to stay in con-trol of what they are doing. In my experience, economic interpretation of the principal relationscould be that guideline and even furnish some theoretical demonstrations.As before we will try to work coordinate-free with GA and GC.Let us consider �rst a basic problem :(24) 8>>><>>>: Max R0T L(x; u; t)dt associatedmultipliersx_ = f(x; u; t) x2En u2Um  (vector)gk(x; u; t)> 0 for k 2 (1; 2;� : ; p) �kx(0)=x0x is the state-variable vector, u the control-variable vector. We write x� , u� their optimal valuesat time t. In a �rst case we suppose that every constraint function contains explicitly some con-trol variable.Let us form an hamiltonian function H :(25) H(x; u; t)=L(x; u; t)+  (t): f(x; u; t)The detailed theory tells us that for an optimal arc we must write :(26) 8>>><>>>: �  _ =rxH� +� krx g�k0=ruH� +�kru g�k�k(t)gk(x�; u�; t) =0 without summation�k(t)> 0Theory tells us also important information on the continuity and derivability of the multipliers(see annex), which we will not study here, as we limit us to a rough outline. Often the most dif-�cult problem is how to put together the optimal arcs of a complete trajectory.How can we explain those apparently mysterious relations ? What do they mean ?Let us start with the famous Bellman Principle, which tells us that any part of an optimal tra-jectory must be optimal. Thus if we call J (x�(t); t) the economic function which we have to opti-mize between t and T , we write :(27) J [x�(t); t] =Maxu;� RtT L(x; u; � )d� =Maxu;� h Rtt+dt Ld� + Rt+dtT Ld�i=Maxu;� h Rtt+dt Ld� i+J [x�(t+ dt); t+ dt]If we develop J� we get :(28) J [x�(t+ dt); t+ dt] ' J [x�(t); t] + (rxJ� ): x�_ dt+ @J�@t dtOn the optimal trajectory the vector rxJ� is, through x�(t) and t , a function of t which we call (t).From (24), (27), (28), and dividing by dt , we get :(29) Maxu(t)[L(x�; u; t)+  (t): f(x�; u; t)] = Maxu(t)H(x�; u; t)= � @J�@tThus we have to do a static optimization, for a given x� at the instant t , under constraints onthe control variables. We obviously have to write the necessary K-T conditions :(30) 0=ruH� +�kru g�k �k g�k=0 �k> 05



Before we go further it might be interesting to give some economic interpretation of theserelations. We may look at the expression(31) H(x�; u�; t) =L(x�; u�; t)+  (t): x_�=� @J�@tas the current cash �ow of an industrial activity between t and t + dt , where x represents thestock of products, u the production factors, x_� the physical variation of stocks,  (t) their unitprice in the period. With relations (30) the manager respects the constraints and optimizes theresult, price variation excluded, of the period.The signi�cance of equation (31) is clear ; the direct contribution to the global result (27) by theelementary period (t; t+ dt) is equal to the diminution of J�(t) during that time. Isn't it remar-kable that such sophisticated mathematics lead to such an obvious result !Let us take now total derivatives relative to x(t) (dont forget that t is here not the timevariable, but the initial value of it). We �rst must note that of course a variation �x of the ini-tial product stock has an incidence �u on the control variable between t and (t+ dt) :(32) �u�= �x� :rxu(x0)As the saturated constraints must be respected we must write :(33) �gs(x0)= 0= �x� :rx gs(x0) + �u� :ru gs(x0)= �x� :rx gs(x0)+ �x� :rxu� :ru gs(x0)= �x� : [rx gs(x0)+rxu� :ru gs(x0)]As �x� is a free vectorial variable in En , (33) implies :(34) rx gs(x0) +rxu� :ru gs(x0) =0 8sAnd for a non saturated gs� we write of course �s�=0 .Now by deriving (31) and with (30) , (32) , (34) , we �nd :(35) �x� :rxH� + �u� :ruH� =� �x� :rx(@J�@t )=� @@t(�x� :rxJ�)=� �x� : _�x� :rxH���s �u� :ru g�s=� �x� : _�x� :rxH���s �x� :rxu� :ru g�s=� �x� : _�x� :rxH� +�s �x� :rx g�s=� �x� : _And �nally we have :(36) rxH� +�srx g�s=�  _which is the so-called coordination equation (between successive elementary periods).If we now multiply (30) by (�u�:) , (36) by (�x�:) , and add the two expressions, we get :(37) �H� +�s �g�s=� �x�: _Let us de�ne :(38) V(x�; u�; t)=L(x�; u�; t) +  (t): x_�+  _ (t):x�=H(x�; u�; t)+  _ (t):x�Here we have the complete �ow of �nancial result of our industrial activity, between t andt + dt , with price variations included. That is what the accountants would calculate, withthe important exception that our unit stock price vector has a precise economic justi�cation(the future oriented value of the products we have in stock at time t ).Now we can write (37) as :(39) �V�= �H� +  _ :�x�=��s �g�s 6



which gives us an economical interpretation of the �s (here we suppose that we replace the cons-traints gs> 0 by gs> �g�s , where the �g�s are given small scalars).It occurs very often that some or all constraints depend only on state variables. This is a sourceof additional complications. Let us take a look at such a problem :(40) 8>>><>>>: Max R0T L(x; u; t)dt associatedmultipliersx_ = f(x; u; t) x2En u2Um  (vector)gk(x; t)> 0 for k 2 (1; 2;� : ; p) �kx(0)=x0Then we must also consider the derived functions :(41) dgkdt =hk(x; u; t)= f(x; u; t):rxgk(x; t) + @gk@tThe hamiltonian remains :(42) H(x; u; t)=L(x; u; t) +  (t): f(x; u; t)With the already de�ned (27) function J [x�(t); t] we �nd again :(43) Maxu;� h Rtt+dt Ld� i+(rxJ� ): x_�dt= � @J�@t dtBut here we de�ne :(44) rxJ� =  +�srx g�sThus we get :(45) Maxu(t)[(L+  : x_ ) +�s hs] =� @J�@t +�s @g�s@tMaxu(t)[H+�s hs] =H� +�sh�s=� @J�@t +�s @g�s@tThe static optimization gives :(46) ruH� +� kru h�k=0 �k g�k=0 �s�=0 (see annex)If we now di�erentiate (45) with respect to x and consider the derived constraints, we get :(47) rxH� +�srxh�s=�rx(@J�@t ��s @g�s@t )=� @@t (rxJ� ��srxg�s) =�  _There are other formulations which do not explicitly use derived constraints , but then we losecontinuity of the multipliers when passing from one arc to another (jump conditions).Of course there is a lot to learn before being able to solve practical cases, but the goal is not outof reach. I hope having shown that coordinate-free mathematical techniques facilitate it. GAo�ers more �exibility than standard matricial calculus.G.RingeisenNovember 2005
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Annex.For complete information I resume here the properties of multipliers, without demonstrations.For the basic problem (24) we have :� The � are piecewise continuous between 0 and T , and continuous at each point of continuityof u�(t). �s> 0 and �s�=0 if g�s�> 0 .� The  (t) are continuous and have piecewise continuous derivatives.� The H function completed with the constraints is continuous, and on each continuity intervalof u� we have dHdt = @H@t .For the problem (40) we have :� The � are piecewise continuous, non increasing between 0 and T , constant (�s) on eachinterval where g�s> 0 .� They are continuous when u� is continuous, and (�k) on each point of discontinuity of h�k .� Given p constants ck , we �nd the optimum equations and the marginal prices rx J� are notmodi�ed by the following transformation !  + ckrx g�k �k!�k� ckThus we can �x �k=0 at some point of the trajectory (and perhaps some interval).Bibliography.Calculus of Variations and Optimal Control Theory - Magnus R. Hestenes - Wiley.Cli�ord Algebra to Geometric Calculus - David Hestenes , Garret Sobczyk - Reidel.Geometric Algebra for Physicists - Chris Doran , Anthony Lasenby - CambridgeDavid Hestenes and Cambridge on Internet
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